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Fr., 52 (1966), from rate data for styrenes at H0 = - 3 found the best fit with 
a Yukawa and Tsuno type correlation with R = 0.78. The uncertainty of 
the parameters does not allow us to appreciate any substantial difference 
when using Brown's or the reduced a+ constants. 
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l,3-Dienes are one of the most useful of the functional 
groups in organic chemistry. The phenomenon of competing 
1,2- and 1,4-electrophilic addition to the members of this series 
has been the object of many investigations.1 Surprisingly, the 
kinetics of these reactions have received little attention.' -1 

The kinetics of acid-catalyzed hydration of 1,3-cycloalka-
dienes have been found to occur by rate-limiting protonation 
of a double bond bond (the ASE2 mechanism),3 albeit with 
some reversal of the reaction so that some diene is present at 
equilibrium (eq 1). The reactivity of cyclohexadiene was es-

o - o - a0H -
timated to be about 30 times that of styrene.3a The hydration 
of 1 -phenyl-1,3-butadiene has also been found to proceed with 
rate-determining protonation at C-4, followed by formation 
of an equilibrium mixture of isomeric alcohols and the diene 
(eq 2).4 2-Ethoxy-l,3-butadiene (29) as well as methyl de-

PhCH=CHCH = CH2 5 = t [PhCH=^CH-CHCHJ+ 

OH OH 

I I 
5 = ± PhCH=CHCHCH 5 + PhCHCH=CHCH ; (2) 

rivatives of this diene were repor ted 5 a to undergo A S E 2 pro
tonation at C-I in 80% acetone. In this case the reactions 
proceeded irreversibly to ketonic products (eq 3). Hydra t ion 
of the l -e thoxy- l ,3-butadienes has also been reported.515 

C H 2 = C ( O E t ) C H = C H 2 ^ * CH1C(OEt)CH=CH2 

29 
O 

H,0 Il 
— ^ C H C C H = C H 2 (3) 

(1975); I. G. Csizmadia, V. Lucchini, and G. Modena, Theor. Chim. Acta, 
39, 51 (1975); A. C. Hopkinson, M. H. Lien, K. Yates, and I. G. Csizmadia, 
ibid., 38, 31 (1975). 

(25) M. M. Otto, J. Am. Chem. Soc, 56, 1393 (1934). 
(26) T. L. Jacobs, Org. React., 5, 50 (1952). 
(27) A. D. Allen and C. D. Cook, Can. J. Chem., 41, 1084 (1963). 
(28) H. C. Haas, N. W. Schuler, and R. L. McDonald, J. Polym. Sci., Part A-I, 

7,3440(1969). 
(29) Z. Rappoport and J. Kaspi, lsr. J. Chem., 12, 989 (1974). 
(30) K. Okamoto, I. Nitta, and H. Shingu, Bull. Chem. Soc. Jpn., 43, 1768 

(1970). 
(31) T. A. Modro, K. Yates, and J. Janata, J. Am. Chem. Soc, 97, 1492 

(1975). 

W e have previously had considerable success in the corre
lation of the rates of the A S E 2 acid-catalyzed hydration of 
1,1-disubstituted alkenes (eq 4) with the sum of the <rp

+ con-

OH 

R 1 R 2 C = C H , - S - * R1R2CCH3 -^* R1RXCH1 (4) 

alow fast 

stants for the substituents at C-I according to 

log k2 = pSrrp+ + C (5) 
where p = — 12.3 and C = — 10.1.6 This correlation included 
all such alkenes for which rates were known or could be ap
proximated in water at 25 0 C, and for which the appropriate 
crp+ values were available. 

2-Substituted 1,3-butadienes should provide an excellent 
test of the validity of eq 5. The compounds may be classed as 
1,1 -disubstituted alkenes where one of the substituents is the 
vinyl group and the other can be varied over a considerable 
range of substituent types. A reliable <TP

+ value of —0.16 for 
the vinyl group has recently become available,7 so an experi
mental study of this important class of compounds was an at
tractive goal. 

It also appeared desirable to seek some additional examples 
of 1-alkenes to further test and extend correlation 5. In par
ticular the two least reactive compounds included in eq 5 were 
ethylene and styrene, and the results for these compounds were 
subject to difficulties in interpretation because of experimental 
uncertainties in the former case and some question as to the 
a-p+ value in the latter.6 Also rates have not been previously 
reported for alkenes in which a positive charge is generated 
adjacent to an electron-withdrawing halogen. Therefore a 
representative of this class was sought to test the generality of 
the theory. 

There is also available in the literature a large body of data 
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Table I. Rates of Acid-Catalyzed Hydration of 1,3-Butadienes CH2=CRCH=CH2 in H2O at 25 0C 

R 

H 
(28) 

Cl 
(27) 

Me 
(26) 

c-Pr 
(24) 

[H2SO4], M 

10.57* 
9.25* 
8.10* 
6.85rf 

\235d 

10.57* 
9.81 ^ 
9.25* 
8.10* 
6.85rf 

4.84'' 
4.33* 
3.85* 
2.37rf 

1.00'' 
0.80'' 
0.50'' 
0.30'' 
0.10rf 

% H2SO4 

66.3 r 

60.5' 
55.1'' 
48.7* 
73.5* 
66.3<-
63.0* 
60.5'' 
55.K 
48.7* 
37.2* 
33.9' 
30.8'' 
20.4<-

9.24* 
7.48* 
4.75* 
2.88* 
0.973* 

" o 

-5 .27 
-4 .52 
-3 .92 
-3 .27 
-6 .33 
-5 .27 
-4 .82 
-4 .52 
-3 .92 
-3 .27 
-2.21 
-1 .98 
-1 .78 
-1 .03 
-0 .32 
-0 .18 

0.07 
0.34 
0.87 

HR 

-10.55 
-9 .05 
-7 .72 
-6 .38 

-12.40 
-10.55 

-9 .68 
-9 .05 
-7 .72 
-6.38 
-4 .35 
-3 .82 
-3 .36 
-1 .98 

^obscU S 

8.29 X 10"2 

7.61 X 10"3 

1.684 X 10-3 

2.85 X 10~4 

3.7OX 10"2 

3.2QX 10"3 

1.54 X 10"3 

3.53 X 10"4 

1.044 X 10"4 

4.29 X 10-? 

1.38 X 10"2 

6.27 X 10-3 

3.68 X 10"3 

5.48 X I9~4 

3.05 X 10~2 

1.99 X 10"2 

1.08 X 10~2 

5.84 X 10"3 

1.65 X 10"3 

Log A-obsd" 

-1.081 
-2.119 
-2.773 
-3.545 
-1.431 
-2.495 
-2.814 
-3.452 
-3.981 
-4.367 
-1.860 
-2.203 
-2.434 
-3.261 
-1.515 
-1.702 
-1.965 
-2.234 
-2.784 

" Rates were correlated by the equation log A0bsd = 7W0 + c a s follows (values of 7, e, and correlation coefficient, respectively): 28 (—1.22, 
-7.56, and 0.999), 27 (-1.00, -7.76, and 0.992), 26 (-1.16, -4.48, and 0.998), and 24 (-1.04, -1.88. and 0.999). Correlation by the equation 
log A:l)bsd = yHR + c gave the respective values: 28 (-0.58. -7.29, and 0.998), 27 (-0.50. -7.75, and 0.989). and 26 (-0.59. -4.42, and 1.000). 
* Interpolated from molarity vs. percentage tables. ' Determined by density measurements. d Determined by titration. 

on the hydration reactivity of styrenes substituted in the aryl 
ring (eq 6).8~13 These reactivities have been found to be cor-

A r C R = C H 2 - ^ A r C + R C H 3 (6) 

related rather well by the a+ substituent constants, and it ap
peared desirable to develop a theory which could accommodate 
the reactivities of the alkenes with the substituents directly 
attached to the double bond (eq 4) and those in which the 
substituent was removed from the double bond by the aryl 
ring. 

Results 

2-Cyclopropyl-l,3-butadiene (24,14 dienes are numbered 
in sequence with those of the previous paper6) was prepared 
by addition of vinylmagnesium bromide15 to cyclopropyl 
methyl ketone and dehydration of the resulting carbinol16 (eq 
7). 2-Phenyl-l,3-butadiene (25)17 was obtained from the 

O OH 

RCCH, 
1. CH,= CHMgBr̂  

2. HO 
CH3CRCH=CH2 

1,R = c-Pr 

MgSO4 

250 0C 
* CH2=CRCH=CH, (7) 

24, R = c-Pr 
25, R = Ph 

corresponding reactions of acetophenone. 2-Methyl- (26) and 
2-chloro-l,3-butadiene (27) as well as 1,3-butadiene (28) itself 
were available commercially. 

The kinetics of the acid-catalyzed hydration of 24-28 were 
obtained by monitoring the decrease in the strong ultraviolet 
absorption of these dienes at their maxima between 219 and 
229 nm. Good first-order kinetics were observed for 26-28 and 
are reported in Table I. In the case of the phenyl derivative 25, 
the solutions became turbid and reliable rate constants were 
not obtained. Plots of log k for 26-28 vs. Ho or HR were linear; 
coefficients for the equation log k = yH + e are given in Table 
I. Kinetic isotope effects were also obtained and are listed in 
Table II. The initial absorbance for 26-28 decreased by more 
than 90% during these reactions. Less than 20% methyl vinyl 

Table II. Solvent Isotope Effects in the Hydration of 1,3-
Butadienes CH2=CRCH=CH2 at 25 0C 

R Acid <obsd, S kH+/kt 

H 

Me 

Cl 

c-Pr 

7.62 M D2SO4 

7 . 6 2 M H 2 S O 4 " 
4.57 M D2SO4 

4.57 M H2SO4" 
11.26 M, D2SO4 

11 .26MH 2 SO 4 " 
4.25 M D2SO4 

4.25 M H2SO4" 
0.763 M D2SO4 

0.763 M H 2SO 4" 

4.49 X 10"4 

8.15 X 10"4 

5.24 X IO-3 

9.28 X IO-3 

5.63 X 10-4 

7.90X 10"3 

3.97 X 10-3 

4.66 X 10~3 

1.75 X 10"2 

1.93 X 10"2 

1.8 

1.8 

1.4 

1.2 

1.1 

Interpolated from the plot of log kobsa vs. H0 

ketone was present in the product from 27 as shown by the UV 
spectra. 

For 24 in dilute acids the initial absorbance decreased by 
about 40% of the initial value and then increased until reaching 
a constant value that was about 80% of the original value 
(figure 1). The beginning portion of the decrease followed 
first-order kinetics when calculated by the Swinbourne18 

method. Similarly, the subsequent increase in absorbance also 
followed first-order kinetics. In 0.3 M H2SO4 the rate con
stants were fc0bSd (decrease) = 5.84 X 1O-3 s_ 1 and &0bsd (in
crease) = 8.05 X 1O-4 s_ 1 . When the alcohol 1, the expected 
product of the hydration, was subjected to the reaction con
ditions, the absorbance increased paralleling the increasing 
absorbance with the diene 24 as the starting material and 
eventually reached a comparable final absorbance. In much 
more concentrated acid these events were followed by a further 
first-order decrease in the absorbance. The rate constants for 
these processes are presented in Tables I—III. 

The rate of hydration of 2-ethoxy-1,3-butadiene (29) was 
calculated from the reported5" rate in 80% acetone at 22 0 C. 
A conversion factor /c2(H2O)//:2(80% dioxane) of 22.9 has 
been found,19 and the rate in 80% dioxane at 25 0 C may be 
approximated as the reported rate in 80% acetone,5a inasmuch 
as the Y values of these solvents are almost identical.20 The rate 
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Table III. Rates of Reaction of 3-Cyclopropylbuten-3-ol (1) and 3-Methylhexa-l,3-dien-6-ol (3) in Aqueous Acid at 25 0C 

Reactant [H2SO4], M % H2SO4 Ha tobsd. S Log A0bsd 

3'' 

1.00* 
0.80* 
0.50* 
0.30* 
0.10* 
4.33* 
3.85* 
2.98' 

9.24'' 
7.48<-
4.75 f 

2.88f 

0.97<-
33.9'' 
30.8^ 
24.8^ 

-0 .32 
-0 .18 

0.07 
0.34 
0.87 

-1 .98 
-1 .78 
-1 .38 

4.95 X IO"3 

3.75 X 10~3 

1.86 X 10"3 

8.55 X IO"4 

2.85 X IO"4 

1.66 X 10"3 

1.10 X 10"3 

3.99 X IO"4 

-2.306 
-2.426 
-2.730 
-3.068 
-3.545 
-2.781 
-2.959 
-3.399 

" A-obsd 0.254 M D2SO4 1.36 X IO"3 s"1, A 0.254 M H2SO4 7.77 X 10-4S-1 (calcd), kH+/kD+ = 0.57. Aobsd 0.763 M D2SO4 6.60 X IO"3 

s"1, k 0.763 M H2SO4 3.26 X 10"3S-1 (calcd), kH+/kD+ = 0.49. Rates monitored at 229 nm. Correlated by the equation log Aobsd = -1.06Wn 
- 2.65, correlation coefficient 0.998. For 1 A2 = kobsd (0.1 M)/h0 = 2.11 X 1O-3 M - 1 s"1. * Determined by titration. ' Interpolated from 
molarity vs. percentage tables. d Determined by density. e kobsd 4.20 M D2SO4 7.28 X 10~4 s"1, ^ 4.20 M H2SO4 (calcd) 1.55 X IO"3 s~'. 
k H+/ka+ = 2.1. Rates monitored at 229 nm. Correlated by the equation log A0bsd = -1.04W0 - 4.83, correlation coefficient 0.999. At Ho 
= 0.0, A2 = 0.148 X IO"4 M-' s-1. 

Table IV. Rates of Acid-Catalyzed Hydration of 2-Bromopropene in H2O at 25 0C 

[H2SO4], M" 

12.09 
11.22 
10.57 
9.81 
9.10 
8.67 

% H2SO4* 

72.5 
69.0 
66.3 
63.0 
59.8 
57.8 

M0 

-6 .18 
-5 .65 
-5 .27 
-4 .82 
-4 .44 
-4 .19 

MR 

-12.18 
-11.26 
-10.55 

-9 .68 
-8 .87 
-8 .38 

A o b s d / ' ' ' S - ' 

6.42 X IO"3 

2.16X IO"3 

9.81 X IO-4 

5.04X IO"4 

1.47 X IO-4 

8.26 X 10- ' 

Log A0bsd 

-2.192 
-2.666 
-3.008 
-3.298 
-3.833 
-4.083 

" Interpolated from molarity vs. percentage tables. * Determined by density measurements. ' Values of the coefficients of the equation 
log Aobsd = jH + t are for H0 -0.94, -7.96, and 0.995 (correlation coefficient); and for HR -0.49, -8.10, and 0.996. '' Aob,d 10.45 M D2SO4 

5.02X 10-4S-1^CaICd 10.45 M H2SO4 7.80 X IO"4 s"1; ku+/kD+ = 1.55. 

constant calculated on the basis of this assumption is 6.0 M ' 
s-1. 

The rates of hydration of 2-bromopropene (30) were mon
itored by observing the disappearance of the absorption of this 
compound on the shoulder at 217 nm for 75% reaction. The 
rates are reported in Table IV. The ultraviolet spectrum of the 
product corresponded to that of acetone, Xmax 262 nm. 

Discussion 

In order to compare rates obtained at different acidities we 
have extrapolated the log &0bsd vs. HQ plots to HQ = 0 and de
fined ki values at that point as A:0bSd/^o ( _ l °g ho = HQ). 
Within the limits of utility of acidity functions,21 we believe 
that this is a reasonable way to derive rate constants for 
structure-reactivity correlations.22 

Mechanism of Hydration. The linear dependence of log k 
on HQ, the kinetic isotope effects, and the 90% or greater de
crease in absorption during the reaction indicate that 26-28 
are all reacting by the A S E 2 path of rate-limiting alkene pro-
tonation followed by addition of water to the allylic carbonium 
ion (eq 8). These reactions are analogous to other electrophilic 

CH1=CRCH=CH, 

R 

yZ + ^ C H 2 

CH3 CH 

OH 

H,O 
CH3CRCH=CH2 + CH3CR=CHCH2OH (8) 

26, R = Me 
27, R = Cl 
28, R = H 

additions of these dienes. For example, addition of concen
trated HCl to 28 was reported23a to give a 65/35 ratio of 

1000 
TIME (sec) 

Figure 1. Reaction of CH2=C(C-Pr)CH=CH2 (24) in 0.50 M H2SO4. 

C H 3 C H = C H C H 2 C l and C H 3 C H C l C H = C H 2 , whereas 
bromination gave equal amounts of (E)-
BrCH 2 CH=CHCH 2 Br and BrCH 2 CHBrCH=CH 2 . 2 3 b The 
equilibrium mixture contained more than 90% of the 1,4-
dibromo isomer under these conditions.236 Addition of HCl 
to isoprene (26) gave >96% Me 2 CClCH=CH 2 , 2 3 c which 
hydrolyzes to give mainly Me 2 COHCH=CH 2 . 2 4 Addition of 
halogens to chloroprene (27) proceeded by 1,4-addition to give 
HaICH 2CCl=CHCH 2HaI, 2 5 3 and addition of HCl gave 
CH3CCI=CHCH2Cl, which could be hydrolyzed in 75% yield 
to CH 3 CCl=CHCH 2 OH. 2 5 b There was some evidence for 
formation of methyl vinyl ketone in this hydrolysis, resulting 
from hydration of the chlorine bearing carbon.25b Our mea
surement of the UV spectrum of the product of hydration of 
27 confirms that methyl vinyl ketone can only be present in 
small amounts. 

The hydration of 24 may be discussed in terms of Scheme 
I. The initial decrease in absorbance corresponds to the pro-
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Table V. Correlation of the Rates of Acid-Catalyzed Hydration of Alkenes R i R 2 C = C H 2 at 25 0 C 

No. Ri R2 S(T1, / U M - 1 S " 1 * Log k2 

24 
26 
27 
28 
29 
30 

c-Pr 
Me 
Cl 
H 
EtO 
Me 

CH=CH2 
CH=CH2 

CH=CH2 
CH=CH2 

CH=CH, 
Br 

-0.63 
-0.47 
-0.05 
-0.16 
-0.88 
-0.16 

0.122 X IO"1 ' ' 
0.319 X 10~4 

0.201 X 10"7 

0.396 X 10-7 

6.0rf 

0.110 X IO"7 

-1.91 
-4 .50 
-7 .70 
-7 .40 

0.78 
-7 .96 

" The values of (Tp+used (ref 6) a r e - 0 . 4 7 (c-Pr), -0.31 (Me), 0.11 (Cl), -0 .72 (EtO), -0 .16 (vinyl), and 0.15 (Br). Thevalue for c-Pr 
is slightly revised from that used previously (see footnote a. Table VlI, ref 19). * Derived by extrapolation plots of log /c0bsd vs. Wo to Ho = 
0.0. ' Derived from £0bsd (0.1 M H2SO4)//!0- ^Calculated from data in ref 5a; see text. 

10.0 

5.0 " 

0.0 

-5.0 

-10.0 

- 1 5 . 0 
-0.5 - 1 . 5 

ZO+ 

Figure 2. Hydration of 1,3-butadienes ( • ) , 2-bromopropene (I 
substituted styrenes (A). 

and 

Scheme I 

k, (H*) MH2O) 

. + - «-k-4 

MH2O) k-5 

OH 

3 

k5(H20) 

OH 
OH OH 

tonation of 24 to carbonium ion 2 which partitions between 
hydration to 1, 3, and 4. The initial large drop in absorbance 
indicates that k2 + k* > /c3. Both 1 and 4 are known to undergo 
carbon skeleton rearrangement to that of 3 on treatment with 
HBr,16 and, for comparison, the solvolysis rate ratio 
£(Me2C=CHCH2Cl)//t(Me2CClCH=CH2) was estimated 
as O.2.26 Apparently k2 » &4, judging from the 96% 1,2-
addition of HCl to isoprene (26).23c The change in the UV 
absorption indicates that 1 is rather quickly converted to 3 in 

dilute acid, and 3 is then converted to a nonconjugated product, 
presumably diol, in stronger acid. 

The observed rate constant beginning with either 24 or 1 
would be fc0bsd = &hyd + &deh if the further formation of 3 and 
4 did not occur. As an approximation /:0bsd is taken equal to 
k\ in Table I and in the correlation of the rates, because the 
initial sharp decrease in absorbance indicates that k^ > k^h-
Similarly the formation of 24 during the conversion of 1 to 3 
is evidently minor so the rate constant for the disappearance 
of 1 may betakenas^2A:3(A;2 + A:3)

_1 (Table III). The solvent 
isotope effect for 24 is lower than expected for Ac i, presumably 
because of the reversible steps. This phenomenon is under 
further study. 

The absorption maximum of 3 has been reported16 as 230 
nm, almost exactly that which we observe for 24 (229 nm). It 
would be anticipated that 3 would be 2-10 times less reactive 
in hydration than isoprene (26) based on the rate effects ob
served for /3-alkyl substituents in other alkene hydrations.19 

The rate data for 3 are given in Table III, and the rate of hy
dration of 3 at HQ = 0 is a factor of 0.5 times that of 26. The 
excellent agreement with the anticipated result provides con
firmation of the validity of Scheme I. 

The cyclopropylcarbinyl carbonium ion ring opening in 
Scheme I is of a type elucidated by Julia, and has been docu
mented for the reaction of 1 with HBr.16 We also observed 
completely analogous behavior in our previous work6 with the 
structurally related a-cyclopropylstyrene (5), which underwent 
initial hydration to 6, but this product was converted in a slower 
step to the ring-opened alcohol 7 (eq 9). The Z configuration 

CH2=C S , Y 
D 

CH3COH 

Ph 

6 

HOCH,CH,CH=CMePh 

(9) 

was assigned to 7, and by analogy the same configuration for 
3 is indicated in Scheme I. Ring openings have been reported 
in other electrophilic additions to vinylcyclopropanes.27 

The acidity dependence of the rates, isotope effects, and UV 
spectra also indicate that hydration of 2-bromopropene (30) 
proceeds by the ASE2 mechanism, with eventual formation of 
acetone (eq 10). 

Br O 

C H 2 = C B r C H 3 

30 

H + 

CH3CCH3 
H2O 

CH3CCH3 (10) 

Correlation of the Rates. The data to test the correlation of 
24 and 26-30 by eq 5 are tabulated in Table V, and the points 
are added to the original correlation line in Figure 2. In general 
it may be noted that the new points fit very well on the previous 
plot, and the agreement of the dienes is better than was the case 
with the original points that determined the line. This success 
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of the correlation to predict the reactivity of these new types 
of alkenes is an impressive achievement and gives added con
fidence to the correctness of the reasoning behind it. Also this 
result adds further strong support to the proposed reaction 
mechanisms for hydration of the dienes (eq 8) and 2-bromo-
propene (eq 10). 

The successful correlation of 27 and 30, with electron-
withdrawing halogen substituents, is particularly impressive. 
These are the first rates reported for ASE2 reactions generating 
carbonium ion centers adjacent to electron-withdrawing 
substituents. 

Equation 5 may also be used to predict that chloroprene (27) 
undergoes initial protonation at C-I. The sum of the ap

+ 

constants for chloro and vinyl, appropriate for prediction of 
protonation at C-I, is —0.05. The <rp

+ constant for the a-
chlorovinyl group, appropriate for C-4 attack, may be ap
proximated as that for vinyl plus the amount (0.30) by which 
an «-chloro changes the erp

+ of methvl, giving a net value of 
0.14. 

In order to incorporate the data for substituted styrenes into 
our general correlation of rates it is necessary to derive sub-
stituent constants for aryl groups as discrete substituents. We 
have chosen to assume that the combined effect of the aryl 
group is the sum of the effect of the phenyl group, unperturbed 
by the substituent, plus the effect of the substituent, attenuated 
by a transmission coefficient T for transmission through the 
aryl ring (eq 11).28 

<Tp+(PhX) = ,Tp + (Ph) + TG+(X) (11) 

The value of the transmission coefficient T in eq 11 is 
available independently from two different sources. Inukai29 

measured the rates of solvolysis of cumyl chlorides substituted 
in the para position by substituted aryl groups. When the log 
k/ko values of these solvolyses are plotted against log k/ko 
values for cumyl chloride solvolyses for the same substituent 
in each series a satisfactory straight line of slope 0.20, corre
lation coefficient 0.982, is obtained (Figure 3). It may be noted 
that Inukai29 interpreted the same plot as being curved but in 
our view within the limits of the experimental uncertainty the 
line is straight. Similarly Eaborn and co-workers30 measured 
the rates of protodesilylation of para-substituted biphenylyl 
trimethylsilanes (eq 12). The plot of log A:(/?-ArPhSiMe3) vs. 

log &(ArSiMe3) is linear with a slope of 0.22. Therefore we 
have adopted the value of 0.2 for the transmission coefficient 
T in eq 11. 

The values of the substituent constants obtained by eq 11 
should agree with those calculated directly from thep-aryl-
cumyl chloride solvolyses, as was done by Inukai.29 Our cal
culated values do agree with small deviations of 0.01-0.04 <r+ 

units. Equation 11 has the advantage that it may be used to 
calculate ap

+ values for many aryl groups for which the rates 
of solvolysis of the corresponding p-arylcumyl chloride are not 
available.31 

The values of the calculated substituent constants for the 
aryl groups and the corresponding rate constants for their 
hydration are given in Table VI, and the fit of the points (tri
angles) to the correlation line is shown in Figure 2. The rates 
of 22 different compounds available from the literature are 
accounted for in a very satisfactory fashion. 

In summary eq 5 has been subjected to a stringent test with 
two classes of compounds, 1,3-butadienes and vinyl halides, 
for which rates were not heretofore available. The success in 
correlating the results lends more authority to the use of the 
equation, and also establishes the reaction mechanisms of these 
important compounds. In addition, derivation of <r+ constants 
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Figure 3. Solvolysis of cumyl chlorides and /varylcumyl chlorides. 

for aryl groups allows a test of the applicability of eq 5 to 
substituted styrenes, and these compounds are found to fit the 
general theory. 

The most conspicuous deviation from the correlation is the 
point for ethylene, at ap

+ = 0. The rate constant for this 
compound at 25 0 C was extrapolated6 from 170-190 0 C and 
we have little confidence in the validity of this extrapolation. 
We are attempting to measure the rate of this important 
compound at 25 0 C, and also to redetermine some of the ap

+ 

values. When these results are available the correlation of eq 
5 will be reevaluated. 

Experimental Section 
1H NMR spectra were run using a Varian T-60 instrument in 

carbon tetrachloride solutions with tetramethylsilane as an internal 
standard. Vapor phase chromatographic (VPC) analyses and sepa
rations were carried out using a Varian-Aerograph Model 920 in
strument with the columns specified. 

1,3-Butadiene (28) was obtained from Matheson Coleman and Bell. 
2-Methyl-l,3-butadiene (26) was obtained from Eastman and was 
distilled twice, bp 34-35 0C. 2-Chloro-l,3-butadiene (27) was obtained 
from Polysciences Co. as a 50% solution in xylene and was purified 
immediately before use by two fractional distillations through a metal 
helix packed column, bp 59.8 0C. 2-Bromopropene (30) was obtained 
from Aldrich. 

2-Phenyl-l,3-butadiene (25)l7 was obtained by first preparing 
vinylmagnesium bromide15'17 by the slow addition of vinyl bromide 
(Aldrich, 53.0 g, 0.50 mol) dissolved in an equal weight of THF 
(distilled from LiAlH4) to a vigorously stirred mixture of 12.0 g (0.50 
mol) of Mg in 100 mL of dry THF in a flame-dried apparatus. After 
the reaction was initiated the vinyl bromide was added at a rate to 
maintain a pot temperature of 50 0C. After completion of the addition 
the flask was heated to 80 0C for 30 min and then cooled to 0 0C with 
continued stirring. Acetophenone (58.0 g, 0.48 mol) dissolved in dry 
THF was added dropwise and after warming to room temperature the 
mixture was allowed to stand overnight. The solution was then hy-
drolyzed with saturated NH4Cl, extracted with ether, dried, and 
distilled at 12 Torr to give a mixture of 3-phenyl-3-hydroxybutene, 
25, and acetophenone. The mixture was dehydrated14 by dropwise 
addition to anhydrous MgSO4 heated to 250 0C with continuous 
distillation of the product at 12 Torr into a flask cooled to 0 0C. The 
diene 25 was collected from the mixture by VPC (20% 3 m X 10 mm 
OV-17 column on Chromosorb W at 200 0C, He 60 mL/min, reten
tion time 5 min) and was isolated in 10%overall yield: NMR (CCI4) 
5 5.0-5.4 (m, 4, 4 vinyl H), 6.4-6.9 (m, 1, vinyl H), and 7.30 (s, 5, 
Ph). 

2-Cyclopropyl-l,3-butadiene (24)14 was prepared by the same 
procedure described for 25 using 27.5 g of methyl cyclopropyl ketone 
(Aldrich). Dehydration of the crude carbinol16 mixture was carried 
out at 250 0C with distillation of the product at atmospheric pressure. 
The diene 24 was collected in 10% yield using a 1.5 m X 10 mm 40% 

Tidwell et al. / Hydration of 1,3-Butadienes and Vinyl Halides 



3400 

Table VI. Rates of Hydration at 25 0C of Styrenes ArCR=CPh in Aqueous Acid 

No. 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

Ar 

p-Anis 
p-Tol 
P-BrPh 
P-MeO2CPh 
P-O2NPh 
P-O2NPh 
p-Anis 
P-O2NPh 
P-HO2CPh 
P-ClPh 
m-ClPh 
p-Tol 
p-Anis 
p-Tol 
p-CIPh 
P-O2NPh 
m-MePh 
P-BrPh 
W-ClPh 
W-O2NPh 
m-BrPh 
p-c-PrPh 

-0 .34 
-0 .24 
-0 .15 
-0 .08 
-0 .02 
-0 .02 
-0 .34 
-0 .02 
-0 .10 
-0 .16 
-0 .10 
-0 .24 
-0 .34 
-0 .24 
-0 .16 
-0 .02 
-0 .20 
-0 .15 
-0 .10 
-0 .05 
-0 .10 
-0 .27 

R 

OMe 
OMe 
OMe 
OMe 
OMe 
OEt 
Me 
Me 
Me 
Me 
Me 
Me 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 

< 

-0 .78 
-0 .78 
-0 .78 
-0 .78 
-0 .78 
-0 .72 
-0.31 
-0.31 
-0.31 
-0.31 
-0.31 
-0.31 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

ScTp+ 

-1 .12 
-1 .02 
-0 .93 
-0 .86 
-0 .80 
-0 .74 
-0 .65 
-0 .33 
-0.41 
-0 .47 
-0.41 
-0 .55 
-0 .34 
-0 .24 
-0 .16 
-0 .02 
-0 .20 
-0 .15 
-0 .10 
-0 .05 
-0 .10 
-0 .27 

k2, M- 1 s- ' 

3.83 X 102 

1.26 X 102 

1.95 X 101 

3.38 
0.794 
1.98 
8.0X IO"3 

5.5 X IO"7 

2.5 X IO"6 

6.1 X 10"5 

1.4 X 10~5 

1.1 X IO"3 

6.45 X IO"5 

2.49 X IO"6 

1.04 X IO"7 

4.93 X IO"10 

9.77 X IO"5 

0.200 X IO"6 

0.229 X IO"7 

0.525 X IO"9 

0.182 X IO"7 

0.147 X IO"4 

Log Zc2 

2.58 
2.10 
1.29 
0.53 

-0 .10 
0.30 

-2 .10 
-6 .26 
-5 .60 
-4.21 
-4 .85 
-2 .96 
-4 .19 
-5 .60 
-6 .98 
-9.31 
-6.01 
-6 .70 
-7 .64 
-9.28 
-7 .74 
-4 .83 

Ref 

b 
b 
b 
b 
b 
C 

d,e 

f 
g 
S 
g 
g 
h 
h 
h 
i 

J 
J 
J 
J 
J 
k 

" Calculated from the formula trp
+(XPh) = 0.2<r+(X) + <jp

+(Ph). b Rates for 31-35 obtained under different conditions (ref 11) were adjusted 
using a relative rate factor for a common substrate. Rates at 29.9 0C in 5% dioxane were approximated to 25 0C in pure H2O by the factor 
54.5/175 where 54.5 and 175 M - 1 s~' are the rate constants for PhCOMe=CH2 reported at 25 0C in c and 29.9 0C in ref 11, respectively. 
The validity of these conversions is confirmed by the fact that when the rate of 36 is multiplied by the MeO/EtO rate factor of 0.39 (footnote 
/, Table IV, ref 19) the resulting rate constant of 0.77 M - 1 s_l is in excellent agreement with that reported for 35. ' Reference 10. J Average 
of the value 9.OXIO-3M-1S-' from e and the value of 7.0 X IO""3 M - 1 s~' calculated from ref 8 using the ho value of 0.129 for the experimental 
determination in 0.102 M HCIO4. e ki from ref 9 calculated by dividing &0bsd by the value of/10 of 0.79 for the experimental determination 
in 4.8% H2S04.1 Reference 9; data at higher acidities extrapolated to Ho = 0. s Reference 9; data not available to extrapolate to HQ = 0 so 
ûbsd f°r 'he experimental determination in 20.2% H2SO4 divided by the ho value of 11 for that acidity. * Average of values extrapolated to 

Ho = 0 from ref 8 and 12. Respective £2 (M"1 s"1) values follow: 43, 6.90 and 6.0 X ia - 5 ; 44, 1.59 and 3.39 X IO"6; and 45, 0.418 and 1.66 
X IO-7. ' Reference 8, extrapolated to H0 = 0.0. > Reference 12, extrapolated to H0 = 0.0. * Reported kobsd = 7.04 X 10-4 s_1 (L. B. Jones 
and S. S. Eng, Tetrahedron Lett., 1431(1968)) in 3.83 M HClO4 (31.7%), H0 = -1.68 (K. Yates and H. Wai, J. Am. Chem. Soc, 86, 5408 
(1964)), ho = 48, £2 = 1.47 X IO"5. 

AgN03-ethylene glycol column32 at 50 0C, He 60 mL/min, retention 
time 10 min: NMR (CCl4) 0 0.4-1.0 (m, 4, CH2CH2), 1.2-1.7 (m, 
1, CH of c-Pr), 4.9-6.7 (m, 5, vinyl H). 

Kinetics. Acid solutions were prepared by diluting concentrated 
H2SO4 with distilled water. Acid strengths were determined either 
by measurements of densities or by titration with standard NaOH. 
Deuterated acid solutions were prepared by dilution of concentrated 
D2SO4 (Aldrich) with D2O. 

Kinetic measurements were made using Cary 14 or 118 instru
ments. Sufficient diene was dissolved in 95% EtOH (gaseous 1,3-
butadiene was bubbled in until a sufficient quantity dissolved) to give 
about 1O-2M solutions and 5-10 ^L of the solution was injected into 
1 cm UV cells containing 3 mL of acid solution thermally equilibrated 
in the spectrometer. After thorough shaking the decrease in absorb-
ance was observed as a function of time. The initial absorbances near 
0.8 decreased to less than 0.1 at 10 half-lives. Rate constants were 
calculated from the expression k\t = In (A0

 _ A)/(Ao — A*) and gave 
good first-order kinetics over 75% reaction. Reactions were monitored 
at the UV maximum of each diene: 24, 229; 25, 222; 26, 225; 27, 220; 
and 28, 219 nm. 

In the case of 2-phenyl-1,3-butadiene (25) turbidity developed in 
the solution during one reaction, even when the initial diene concen
tration was reduced by 90%. The absorbance increased for several 
minutes after mixing, then decreased, and on longer reaction times 
increased somewhat and then decreased again. Good first-order ki
netics could not be derived for any portion of the reaction so further 
study of this compound was deferred. 
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followed by addition of water with C-O bond cleavage (eq 
I ).2~6 Vinyl acetates react through the same mechanism when 

RC(OPO3EU=CH2 ^-* RC(OPQ1Et1)CH3 
slow 

O 

^ * RQOHo)(OPOjEt2)CH3 — • RCCH3 + (EtO)2PO2H (1) 

the group R is electron donating, but when R is electron 
withdrawing react by the normal A A C 2 mechanism of ester 
hydrolysis (eq 2).7-8 
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Abstract: The rates of hydration of diethyl a-substituted vinyl phosphates ((EtO)2PO2CR=CH2, R = H, Me, c-Pr, and EtO) 
and ^-substituted vinyl acetates (AcOCR=CHj. R = c-Pr and EtO) in aqueous acid at 25 0C have been determined. The 
rates, solvent isotope effects, isotopic labeling studies, and acidity dependence of the rates are consistent with the ASE2 mecha
nism of rate-determining protonation on carbon. Electrophilic substituent parameters (<rp

+) have been determined for the 
groups diethyl phosphoryioxy and acetoxy as -0.13 and -0.06, respectively. Use of these substituent parameters allows the 
correlation of the rates of these vinyl esters by the equation log &2

 = p2<rp
+ + C. In addition the rates of 1 1 other vinyl esters 

available in the literature can also be included in the correlation. 
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